Cluster Validity Measures Dynamic Clustering Algorithms
نویسندگان
چکیده
Cluster analysis finds its place in many applications especially in data analysis, image processing, pattern recognition, market research by grouping customers based on purchasing pattern, classifying documents on web for information discovery, outlier detection applications and act as a tool to gain insight into the distribution of data to observe characteristics of each cluster. This ensures that cluster places its identity in all domains. This paper presents the clustering validity measures which evaluates the results of clustering algorithms on data sets with the three main approaches of cluster validation techniques namely internal, external and relative criteria. Also it validates the cluster using the cluster indices namely Dunn’s index, DaviesBoludin index and Generalized Dunn Index using K-mean and Chameleon algorithm.
منابع مشابه
Multi-layer Clustering Topology Design in Densely Deployed Wireless Sensor Network using Evolutionary Algorithms
Due to the resource constraint and dynamic parameters, reducing energy consumption became the most important issues of wireless sensor networks topology design. All proposed hierarchy methods cluster a WSN in different cluster layers in one step of evolutionary algorithm usage with complicated parameters which may lead to reducing efficiency and performance. In fact, in WSNs topology, increasin...
متن کاملAdaptative Hausdorff Distances and Dynamic Clustering of Symbolic Interval Data
This paper presents a partitional dynamic clustering method for interval data based on adaptive Hausdorff distances. Dynamic clustering algorithms are iterative two-step relocation algorithms involving the construction of the clusters at each iteration and the identification of a suitable representation or prototype (means, axes, probability laws, groups of elements, etc.) for each cluster by l...
متن کاملAdaptive Hausdorff distances and dynamic clustering of symbolic interval data
This paper presents a partitional dynamic clustering method for interval data based on adaptive Hausdorff distances. Dynamic clustering algorithms are iterative two-step relocation algorithms involving the construction of the clusters at each iteration and the identification of a suitable representation or prototype (means, axes, probability laws, groups of elements, etc.) for each cluster by l...
متن کاملارائه یک الگوریتم خوشه بندی برای داده های دسته ای با ترکیب معیارها
Clustering is one of the main techniques in data mining. Clustering is a process that classifies data set into groups. In clustering, the data in a cluster are the closest to each other and the data in two different clusters have the most difference. Clustering algorithms are divided into two categories according to the type of data: Clustering algorithms for numerical data and clustering algor...
متن کاملValidation of Document Clustering based on Purity and Entropy measures
Document clustering aims to automatically group related document into clusters. If two documents are close to each other in the original document space, they are grouped into the same cluster. If the two documents are far away from each other in the original document space, they tend to be grouped into different cluster. The classical clustering algorithms assign each data to exactly one cluste...
متن کامل